import io
import os
import sys
import math
import csv
import time
import itertools
import bisect
import string
import requests
import random
import requests
import json
import numpy
import pandas as pd
import alpha_vantage
import bs4
from bs4 import BeautifulSoup
def ohlc_stock_price_scraper(symbol, interval, api_key):
# Use GET request to access data through API, using custom API key and desired symbol/interval options
data = requests.get('https://www.alphavantage.co/query?function=TIME_SERIES_' + interval + '&symbol=' + symbol + '&apikey=' + api_key + '=csv')
return data
data = ohlc_stock_price_scraper('AAPL', 'DAILY', 'WTX6IKTWWR57LOIQ&datatype')
raw_data = pd.read_csv(io.StringIO(data.content.decode('utf-8')))
raw_data.head(10)
timestamp | open | high | low | close | volume | |
---|---|---|---|---|---|---|
0 | 2019-04-05 | 196.450 | 197.100 | 195.93 | 197.00 | 18472107 |
1 | 2019-04-04 | 194.790 | 196.370 | 193.14 | 195.69 | 19114275 |
2 | 2019-04-03 | 193.250 | 196.500 | 193.15 | 195.35 | 23271830 |
3 | 2019-04-02 | 191.090 | 194.460 | 191.05 | 194.02 | 22765732 |
4 | 2019-04-01 | 191.640 | 191.680 | 188.38 | 191.24 | 27861964 |
5 | 2019-03-29 | 189.830 | 190.080 | 188.54 | 189.95 | 23563961 |
6 | 2019-03-28 | 188.950 | 189.559 | 187.53 | 188.72 | 20780363 |
7 | 2019-03-27 | 188.750 | 189.760 | 186.55 | 188.47 | 29848427 |
8 | 2019-03-26 | 191.664 | 192.880 | 184.58 | 186.79 | 49800538 |
9 | 2019-03-25 | 191.510 | 191.980 | 186.60 | 188.74 | 43845293 |